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Abstract- In this paper parametric studies on the frequency properties of a rotating multi-layered
cylindrical shell are undertaken. The equations of motion for the rotating multi-layered shell, which
consider the effects of centrifugal, Coriolis and the initial hoop tension, are formulated using Love's
first approximation theory. The analysis is carried out using closed-form solutions for the simply
supported cylindrical shell. Results are presented for the frequency characteristics at different modes,
geometric properties and different layered configurations of the rotating cylindrical shell. Effects of
centrifugal and Coriolis influence on the frequencies and vibratory displacement are also considered.
The present method is found to be accurate when compared with results available in the literature.

INTRODUCTION

The rotating cylindrical shell, which has a wide range of engineering applications such as
gas turbines, locomotive engines, electric motors and rotor systems, was first studied more
than a century ago. However, when compared with the stationary shell, the rotating shell
is still very much less studied. A study of the free vibrations of a rotating cylindrical shell
is therefore essential to the understanding of rotating structures.

The earliest recorded work on rotating cylindrical shells was by Bryan (1890) in which
the free vibration of a rotating cylindrical shell was considered and the phenomenon of
travelling modes was also discovered. Early works on rotating shells included the study of
the Coriolis effect on the free vibration by Oi Taranto and Lessen (1964) and Srinivasan
and Lauterbach (1971) for infinitely long rotating shells and by Zohar and Aboudi (1973)
for finite length rotating shells. Other works included the study of long rotating cylinders
subjected to prestresses by Padovan (1973) and the study of vibrations and buckling of
rotating anisotropic shells by Padovan (1975a). Cylindrical shells undergoing rotation and
subjected to a radial excitation have been considered by Fox and Hardie (1985). In the
more recent works, the free vibrations of rotating composite shells have been studied by
Rand and Stavsky (1991) and a finite element analysis for rotating shells has been under­
taken by Chen et al. (1993).

In most of these papers, the rotating shells considered were for a single-layered type
of shells with the exception ofPadovan (1975b), where multi-layered cylinders were studied.
Furthermore, usually not enough parametric studies were carried out to understand the
frequency properties of a rotating cylinder.

In this paper, parametric studies on the frequency properties were therefore undertaken
for a rotating multi-layered cylindrical shell. The objective was to investigate and under­
stand the frequency characteristics of a rotating multi-layered cylindrical shell, which are
very often more useful than the single-layered type of shells because of the enhancement
and improvement in the mechanical properties which the layering provides. The equations
of motion, which take into account the effects of centrifugal, Coriolis and initial hoop
tension, were formulated using Love's first approximation theory. The analysis was carried
out using closed-form solutions for simply supported multi-layered cylindrical shells. In its
present formulation, the analysis is valid for an arbitrarily layered cylindrical shell with
different material properties and with different layered configurations. The present for­
mulation can also be extended to include other boundary conditions using a solution
method presented by Rand and Stavsky (1991).

647



648 K. Y. Lam and C. T. Loy

(a)

1h
T

Tn 1.
Ih.1 '"

R 1 4

r
x

(b)

Fig. I. (a) Geometry of a multi-layered cylindrical shell; (b) cross-sectional view of a multi-layered
cylindrical shell.

In the parametric studies undertaken, results are presented for a three-layered cyl­
indrical shell. The parametric studies carried out included the effects of centrifugal and
Coriolis influence, the variations of natural frequencies with the rotating speeds and the
modes of vibration, the influence of geometric properties and layered configurations on the
natural frequencies and the influence of rotation on the vibratory displacements. The
present analysis has been examined by comparing results with those in the literature for a
stationary and a very long rotating cylindrical shell. In both cases, very good agreement
was observed.

THEORETICAL FORMULATION

Figure I(a) shows the nomenclature for a multi-layered cylindrical shell rotating about
its horizontal axis at an angular velocity n, where L is the length, h is the thickness and R
is the radius. The reference surface of the shell is taken to be at its middle surface where an
orthogonal co-ordinate system (x,y, z) is fixed. The deformations of the cylinder are defined
by u, v and w in the x, y and z directions, respectively.

The equations of motion for a rotating cylindrical shell can be written as
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(5)

where P and PI are the density and density per unit length, respectively. IV = PI02r2 is defined
as the initial hoop tension due to the centrifugal force, and N j and M; are the force and
moment resultants defined as

(6)

(7)

For a thin cylindrical shell, the stresses defined in eqns (6) and (7) are defined by the two­
dimensional Hooke's law,

(8)

where the strain components in eqn (8) have been defined as linear functions of the thickness
coordinate z following Love's first approximation theory (1952) as

ex = e j +zk j

eo=e2+ zk2

exo = y+2z, (9)

where ex, eo and exo are, respectively, the strains in the axial and circumferential directions
and the shear strain at a distance z from the reference surface. eb e2 and yare the reference
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surface strains and kj, k2 and r are the reference surface curvatures. Both the reference
surface strains and curvatures are defined as

(10)

(11)

where the subscripts ,x;, xx ; , () ; , ()() ; , x() indicate the partial derivatives with respect to
these parameters.

By substituting eqn (9) into (8) and then substituting the resulting equation into eqns
(6) and (7), the force and moment resultants can be obtained as

N< All All 0 B ll Bll 0 el

No A l2 All 0 Bll Bll 0 e2

N xo 0 0 A 66 0 0 B66 Y
M x BlI B I2 0 D II D I2 0 k 1

(12)

Mo Bll Bll 0 D ll Dll 0 k2

M xo 0 0 B66 0 0 D66 2r

where Au, Bu and Du are the extensional, coupling and bending stiffnesses defined, respec­
tively, as

For an arbitrarily layered shell, these stiffnesses can be re-written as

N j

Au = L Qt(hk -hk - 1 )

k=1

1 Nj

" k 2 2Bu = -2 1.... Q u(hk - hk _ I)
k=1

(13)

(14)

(15)

(16)

where N i denotes the number of layers and hk and hk - 1 denote the distances from the shell
reference surface to the outer and inner surface of the kth layer as indicated in Fig. l(b).
For a thin shell, which is assumed to be in a state of plane stress, Qt are the reduced
stiffnesses for the kth layer defined as

(17)

(18)
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(20)

where Ek and Vk are the Young's modulus and Poisson's ratio for the kth layer.
By substituting eqn (12), with substitutions from eqns (10) and (11), into eqn (1), eqn

(1) can be written in a matrix form as

(21)

where Lij (i,j = 1,2,3) are the differential operators with respect to x and fJ.
In the parametric studies, a simply supported cylindrical shell is considered. The simply

supported boundary conditions at the two ends of the shell, x = 0 and L, are

v = w = N x = M x = O. (22)

For the simply supported-simply supported boundary conditions, the solution which sat­
isfies the boundary conditions can be expressed in closed form as

(mnx)u=Ucos L cos(nfJ+wt)

(mnx) .
v = Vsin L sm (nfJ+wt)

(mnx)w = Wsin L cos (nfJ+wt). (23)

Substituting eqn (23) into eqns (10) and (11) and substituting eqn (12), with resulting
expressions from (10) and (II) together with eqns from (13) to (20), into eqn (1), eqn (1)
can be written in a matrix form as

(24)

The details of the coefficients Cij (i,j = 1,2,3) are given in the Appendix. To solve for the
eigenvalues w, the non-trivial solutions condition is imposed by setting the determinant of
the characteristic matrix in eqn (24) to zero; the eigenvalues w can then be obtained by
using the Newton~Raphson procedure.

RESULTS AND DISCUSSION

To examine the present analysis, comparisons are made with a simply supported non­
rotating cylindrical shell and a very long rotating cylindrical shell. The comparison with
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Table I. Comparison of frequency parameter w' = wh(J(pIG))/rr for
a non-rotating cylindrical shell with simply supported boundary con­

ditions (m = I, hlR = 0.06, v = 0.3)

mrrRIL

0.5rr

2rr

n Bhimaraddi (1984) Present

I 0.01853 0.01853
2 0.01090 0.01090
3 0.00828 0.00831
4 0.01011 0.01021
I 0.02781 0.02787
2 0.02214 0.02219
3 0.01818 0.01827
4 0.01748 0.01766
I 0.03692 0.03748
2 0.03612 0.03674
3 0.03566 0.03640
4 0.03632 0.03726

Table 2. Comparison of frequency parameter w* = wRv'((I-v')pIE) for a very long rotating
cylindrical shell (hi R = 0.002, v = 0.3)

Chen et al. (1993) Present
Q (rev/s) n w~ wt w~ wt

0.05 2 0.00167 0.00142 0.00169 0.00144
3 0.00448 0.00429 0.00449 0.00431
4 0.00848 0.00833 0.00850 0.00835
5 0.01370 0.01353 0.01370 0.01355

0.1 2 0.00180 0.00130 0.00186 0.00136
3 0.00457 0.00419 0.00464 0.00427
4 0.00855 0.00826 0.00863 0.00833
5 0.01371 0.01347 0.01379 0.01355

Subscripts band f denote the backward and forward waves, respectively. From eqn (45) of
Chen et al. (1993).

2n !n'(n'-I)' Eh' n4 +3 2
Wb = --Q+ + ~~-Q

n'+1 'V n'+1 p(l-v')12r' (n'+J)'

2n
wr=--Q­

n'+1

n'(n' _I)' Eh' n4 + 3
I_~_~ ~ + ~~_Q2.

n'+1 p(l-v')12r' (n'+1)'

the simply supported non-rotating shell is presented in Table 1, in which the frequency
parameter w' = wh(J(p/G))/n is compared for three different values of the parameter
mrr-R/L (0.5n, nand 2n) and for the parameter h/R = 0.06. The comparison with a very
long rotating shell is presented in Table 2, in which the frequency parameter
w* = RwJ((1-v2)p/E) is compared with the results obtained using eqn (45) in Chen et
al. (1993) for two angular speeds of rotation (0 = 0.05 and 0.1 rev/s) and for the parameter
h/R = 0.002. For both comparisons, a Poisson ratio v = 0.3 is used and in the frequency
parameters defined above, E is the Young's modulus of elasticity, G is the shear modulus,
v is the Poisson's ratio, p is the density, h is the thickness, R is the radius and w is the
natural frequency of the shell. From the comparisons presented in the two tables, very good
agreement is observed which indicates that the present analysis is accurate.

In the present paper, the free vibration characteristics for a rotating multi-layered
cylindrical shell have been studied in greater depth. Four parametric studies are made in
this paper. The first study is to investigate the influence of centrifugal and Coriolis effects
on the natural frequencies of rotating cylindrical shells. The results are shown in Figs 2--4.
In Fig. 2, the frequencies of the rotating shell have been normalized with respect to the
corresponding natural frequenciesfo for a non-rotating cylinder to show the significance of
the rotational effects on the natural frequencies. The second study is to investigate the
frequency characteristics for different geometric properties of the cylindrical shell. The
results are shown in Figs 5-8. The third study is to investigate the influence of different
layered configurations on the natural frequencies. For this study, three cylindrical shells
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Table 3. Properties of materials for multi-layered cylindrical shells

Cylinder Layer h (mm) E(N/m') p (kg/m')

Inner ho/5 4.8265 x 109 0.3 1314
Middle 3ho/5 2.0685 x lO" 0.3 8053
Outer ho/5 4.8265 x 109 0.3 1314

II
Inner 3ho /7 4.8265 x 10' 0.3 1314
Middle ho /7 2.0685 x 10" 0.3 8053
Outer 3ho/7 4.8265 x 10' 0.3 1314

III
Inner ho/3 4.8265 x 109 0.3 1314
Middle ho/3 2.0685 x 10" 0.3 8053
Outer ho/3 4.8265 x 109 0.3 1314

ho = 2 mm.

with different layer thickness are considered. The three cylindrical shells which have three
layers of construction are termed cylinder I, II and III to differentiate their different layered
configurations. Cylinder I has a middle layer which is three times the thickness of the other
two layers; cylinder II has a thin middle layer which is three times thinner than the other
two layers; cylinder III has equal thickness for all the three layers. Their geometrical and
material properties are given in Table 3. The results for this study are shown in Figs 9-11.
The last study is to investigate the influence of the rotation on the vibratory displacement
of the shell. The results are shown in Figs 12-14. For the four studies carried out, the first,
second and fourth study involve cylinder I and the third study involves all three cylinders.

The free vibration solution for a rotating cylindrical shell is a function of the rotational
speed. For a given rotational speed, the two smallest eigensolutions for each mode of the
vibration, i.e. for each pair of the wave numbers (m, n) where m is the axial wave number
and n is the circumferential wave number, consist of positive and negative eigenvalues.
These two eigenvalues correspond to the natural frequencies for the backward and forward
travelling waves or to the natural frequencies for positive and negative rotational speeds of
the shell. The positive eigenvalue corresponding to the backward waves is due to a rotation
n > 0 and the negative eigenvalue corresponding to the forward waves is due to a rotation
n < O. In the case of a stationary shell, these two eigenvalues are identical and the vibratory
motion of the shell is a standing wave motion. However as the shell started to rotate, this
standing wave motion is transformed, and, depending on the direction of rotation, back­
ward or forward waves are present. Two rotational effects are introduced when the shell
rotated; one is the centrifugal effect and the other is the Coriolis effect. These effects are
found to have different influences on the frequency characteristics of the shell in the present
study.

Figure 2 illustrates the different influences which centrifugal and Coriolis effects have
on the natural frequencies of a rotating shell. The present study shows that, when both the
centrifugal and Coriolis effects are present, the natural frequencies associated with the
backward waves are found to increase monotonically with the rotational speed and for the
forward waves, the natural frequencies decreased initially and then increased gradually
with the rotational speed. When only the centrifugal effect is present, which is obtained by
omitting the 2nw term in the equations of motion, the natural frequencies for both the
backward and forward waves are found to increase monotonically and there is very little
difference between the natural frequencies of the two waves. However, at low rotational
speeds there is a slight difference in the frequencies but this difference diminishes when the
rotational speed increases. These observations indicate that the influence of Coriolis and
centrifugal effects on the natural frequencies are different and the Coriolis effect is the major
factor causing the difference in the natural frequencies between the forward and backward
waves or the bifurcations of natural frequencies. From the normalized frequencies, the
significance of the rotation influence on the natural frequencies is also clearly brought out.
Finally, it is concluded that both centrifugal and Coriolis effects have significant influence
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Fig. 2. Nonnalized natural frequency fifo as a function of rotating speed n (rps) for a simply

supported rotating multi-layered cylindrical shell (m = I, n = 2, hiR = 0.002, LiR = 20).

on the natural frequencies and that these effects are important and should be considered
when rotation is present.

Figure 3 illustrates the effect of the rotational speed on the frequency characteristics
of a rotating shell. In the figure the frequency curves for the case of n = 0, I and 4 rps
(cps = revolutions per second or Hz) are shown. The general frequency characteristic of a
rotating shell is similar to that of a stationary shell, i.e. the natural frequencies of both the
backward and forward waves first decrease with the wave numbers and then increase. The
natural frequencies of the backward waves are greater than those for a stationary shell, and
for the forward waves, the natural frequencies are lower before the fundamental frequency
for the stationary shell is attained and are always greater after the fundamental frequency
has been attained. For any rotational speed, the difference between the natural frequencies
of the forward and backward waves is always larger at a small circumferential wave
number than at a big circumferential wave number, and this difference diminishes as the
circumferential wave number becomes bigger. At small rotational speed, the difference
between the frequencies of the two waves is small compared to when the rotational speed
is high. This indicates that the rotational effect is significant at high rotational speeds.

Figure 4 shows the frequency characteristics of a rotating shell at various modes (m, n)
of vibration. The vibrational modes shown in the figure are (1,2), (1,4), (2,2) and (2,4). For
these modes, the natural frequencies of the two waves increase monotonically with the
rotational speeds, except for the forward waves of the mode (1,2) which decrease initially
and then increase with the rotational speeds. All the frequencies are found to increase
uniformly as the rotational speeds become bigger.



Free vibrations of a rotating shell

80r---------------------,

Backward waves

Forward waves

655

50 0 =0

+ 0 -1 rpo

* 0 =4 .po

40

I
I

I
I

I

f so

20

10

/

I
/

/
X

/
I

/
I

X
/

/
I

I

X
/

/
/

/

n
Fig. 3. Natural frequency f (Hz) as a function of circumferential wave number n for a simply

supported rotating multi-layered cylindrical shell (m = I, hiR = 0.002, LIR = 20).

Figure 5 shows the variation of the natural frequency with the rotational speed for
different hiR ratios. The natural frequencies for the two waves increase with the hiR ratio
for all rotational speeds. There is no obvious influence of the hiR ratio on the forward and
the backward waves.

Figure 6 shows the variation of the natural frequency with the rotational speed for
different LIR ratios. The natural frequencies of the two waves decrease with LIR ratios for
all rotational speeds. There is no obvious influence of the LIR ratio on the forward waves
and the backward waves.

Figures 7 and 8 show the variation of the fundamental frequency with LIR ratio for
n = 0.5 and 4 rps, respectively, and for the parameters hiR = 0.002 and 0.01. In both the
figures, the fundamental frequencies for the two waves decrease with the LIR ratio. The
fundamental frequencies for the forward and backward waves of a bigger hiR ratio are
always larger than those of the corresponding waves of a smaller hlR ratio. For cylinder
rotating at lower speed n = 0.5 rps, bifurcation of natural frequencies for small LIR ratio
is not significant. Bifurcation of natural frequencies becomes significant as the LIR ratio
becomes larger. However for a cylinder rotating at the higher speed of Q = 4 rps, bifurcation
of natural frequencies is relatively significant even at small L(R ratios. It also appears from
the present study that the hiR ratio has little or no bifurcation effect on the natural
frequencies. This can be noted from the apparently similar difference in natural frequency
between the forward and backward waves at hiR = 0.002 and hiR = 0.0 I for both speeds,
n = 0.5 and 4 rps.

Figures 9, 10 and 11 show the influence of the layered configuration on the natural
frequency. Figure 9 shows the influence of the layered configuration on the variation of
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natural frequency with the rotational speed for cylinders I, II and III. The study shows that
cylinder I, which has a thicker middle layer than the outer and inner layers, has higher
natural frequencies for the forward and backward waves followed by cylinder III, which
has all layers of equal thickness, and cylinder II, which has a thinner middle layer than the
other two layers.

Figure 10 shows the influence of layered configuration on the variation of the natural
frequency with the circumferential wave number. The natural frequencies for the forward
and backward waves for the three cylinders first decrease and then increase with the
circumferential wave numbers. Cylinder I has higher natural frequencies, followed by
cylinder III and cylinder II.

Figure II shows the influence of layered configuration on the variation of the fun­
damental frequency with the LjR ratios. For the three cylinders, the fundamental fre­
quencies for the forward and backward waves decrease with the LjR ratios. Cylinder I has
higher fundamental frequencies, followed by cylinder III and cylinder II.

Figures 12-14 compare the relative displacements of cylinder I for {} = 0 and 1 rps. It
is found that rotation has a significant influence on the vibratory displacement response of
the cylinder, and the influence is most significant at places where the displacements are a
maximum. Further examination also showed that the difference in the relative displacements
between a stationary cylinder {} = 0 and that due to backward and forward waves at {} = 1
rps in the u direction are 6.4% and 14.3%, respectively. In the v direction, these differences
are 82% and 71.2%, respectively and in the w direction, the differences are 6.4% and
14.2%, respectively. This indicates that the rotational motion on the vibratory displacement
of the cylindrical shell is significant and the effect is also most prominent in the v direction.
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The results show that rotational motion has a significant effect on both the frequencies
and vibratory displacement of the shell, and these effects depend largely on the speed of
rotation.

CONCLUSIONS

Parametric studies for the free vibrations of a thin rotating multi-layered cylindrical
shell have been presented. Results on the influence of rotation on the frequency charac­
teristics and vibratory displacements and the frequency characteristics at different modes
of vibration, geometric properties and layered configurations are presented. Interesting
insights are also shed in the course of the study. The present work can also be extended to
study rotating composite laminated shells.
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APPENDIX

The coefficients Co; in the eqn (24) are defined as follows:

(AI)

(A2)

(A3)

(A4)

(A5)

2D"m2 mr' B 12m'mr'

L 2 R 2 L 2 R

(A7)
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2B66 m'mr'
-'-'------ +2wQp,-nQ'p, (A8)

L'R

D 11 m4n4 D'2n4 2B22 n' A 22C]3 = -------------
. L 4 R 4 R J R 2

2B m2n'
12 +Q2 p,R+w2p,_n'Q'p,. (A9)
L'R


